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Abstract: In this study, micro/nano-bubble generated by cavitation effect as a promoting factor for 
flotation was investigated using the atomic force microscope (AFM). Hydrodynamic cavitation tests 
were performed with a venturi bubble generator. Additionally, bubble size distribution (BSD) under 
the hydrodynamic cavitation effect was also studied at different water flow speed conditions. Dozens 
of nanometers height bubbles attached to the hydrophobic substrates were detected. Besides, the 
cavitation cloud grew thicker with the flow velocity increasing from 26.52 m/sec to 53.04 m/sec, near 
the venturi tube nozzle. All results showed the importance of the cavitation effect on the micro/nano-
bubbles formation and the BSD in flotation. 
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1. Introduction 

Micro/nano-bubbles formation mechanism, depend on dynamics and thermodynamics process of the 
fluid environment, is an important factor for improving understanding of the flotation bubble 
characteristics (Zhou et al., 2008; Emin et al., 2015; Li et al., 2016). In this process, the cavitation included 
hydrodynamic cavitation and supersaturated cavitation is the critical factor for micro/nano-bubbles 
formation. It is well known that the cavitation is defined as a function not only of the saturation vapor 
pressure decreased in flotation but also of plenty of cavitation nuclei in water (Yount, 1997; Liu, 2017). 
It is presented as: 

                                                          (1) 

where uw1 and uw2 are flow velocities at different points in the same flow system respectively, P1 and P2 
are pressures at different points respectively, ρw is water density, C is a constant. 

The cavitation effect is not well understood since it is influenced by the aeration and the mineral 
particle characteristics in flotation. In the case without aeration, high speed rotating impeller within the 
flotation machine could produce a lot of cavities, but the cavitation bubbles would collapse with the 
flow velocity or the pressure decreasing. Eq. 2 (Teixeira et al., 2006) presents the relationship between 
the impeller surface pressure Pim and impeller rotate speed Nr in water. 

                                                        (2) 

where P0 is the local atmospheric pressure, h is the impeller depth submerged in water, and Cb is the 
coefficient related to the impeller. 

Supersaturated cavitation is the main way of micro/nano-bubble formation in the low-pressure zone 
of the dissolution air flotation machine with the saturation vapor pressure decreasing (Zhou et al., 1996). 
There are also a wide range of low-pressure zone in the jet flow machine and the machinery stirring 
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flotation machine. In such a case, tiny bubbles (nanometer and micrometer level) can generate on a solid 
surface (Henderson et al., 2008a, 2008b, 2008c). It is hard to come out cavitation in pure water because 
there are not enough cavitation nuclei. The good news is that mineral particles and gas nuclei provide 
sufficient cavitation nuclei in the flotation system(Lurie and Rebhun, 1997; Zhou et al., 1998; Zhou et al., 
1999; Fan et al., 2010a; Verrelli et al., 2011). Abundant tiny bubbles (< 100 µm) by cavitation are beneficial 
to float fine minerals and aggregates, particularly in the low-pressure zone. This level of pressure is two 
orders of magnitude lower than the supersaturation required for spontaneous nucleation of bubbles in 
bulk water (Yount and Kunkle, 1975; Oliveira and Rubio, 2011). It implies that cavitation bubbles 
formation needs to have both pressure decrease and process initiation. 

In the agitation and jet process of flotation, the aeration provides a source of bubbles, meanwhile, 
the cavitation plays a key role in the tiny bubble formation. In this study, the main aim was to illuminate 
the cavitation effect which promotes micro/nano-bubbles formation and influences bubbles size. 

2. Experimental 

2.1. Materials and methods 

Several methods such as bubble size distribution (BSD) and bubble surface area flux (BSAF) can be used 
to determine the bubble characteristics and the influence factors of flotation (Nguyen et al., 2006; Assemi 
et al., 2008). In this study, some experiments were carried out by using a series of substrates (diameter 
10mm), analytical anhydrous ethanol, enough ultrapure water (after multi-stage filtration, high-
performance ion exchange, ultrafiltration filter, ultraviolet ray removal processing, the resistivity > 18 
mΩ.cm), two syringe pumps (10 cm3), a special glass venturi tube bubble generator and a set of flotation 
machine impeller device. 

The hydrophobicity of Au and Pb materials surfaces can fit the bubbles generation requirements. In 
the experiment, the Au and Pb substrates, surface relief < 5 nm measured by AFM, were used in the 
micro/nano-bubble sample preparation and the micro/nanobubbles characteristic testing. Each 
substrate was fixed on the sample vessel bottom by three buckles equably. To analyze the effect of nano-
bubble on the Au and Pb substrates surface, the contact angle was measured by a DSA100 measurement 
instrument(contact angle measurement range: 0~180°, resolution: +/- 0.01°) before micro/nano-bubble 
preparation. The contact angles of Pb and Au substrates were measured as 26° and 75°, respectively, as 
seen in Fig. 1. 

 
Fig. 1. Contact angle of (a) Pb and (b) Au substrates 

The special glass venturi tube was used to investigate the cavitation effect. A schematic diagram is 
shown in Fig. 2. The feeding pipe diameter(d1) is 11mm, and the nozzle diameter (d2) is 1.5 mm. This 
kind of the venturi bubble generators was widely used in various flotation equipment such as Jameson 
flotation column (Jameson et al., 2007), jet flotation machine (Chanson et al., 2004), cyclonic micro-
bubble flotation column, etc. (Zhang et al., 2009; Cao et al., 2009). With flow speed increasing in the 
nozzle, negative pressure initiates and then causes aeration near the gas-liquid interface in the gas cham- 

 
Fig. 2. Special glass venturi tube 

(a) Pb (b) Au
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ber (or aeration room) (Bhattacharjee et al., 1998; Miller et al., 1999; Paunov et al., 2002; Tao, 2004; 
Dressaire et al., 2008). The consecutive aeration results in a powerful suction effect. Air volume can be 
controlled through an inlet valve yet. 

2.2. Supersaturated cavitation tests 

There are quite a few literature reported using the tap mode of AFM for the micro/nano-bubbles 
measurement (Assemi et al., 2006a; Assemi et al., 2006b; Hampton and Nguyen, 2010). The intelligent 
mode of a German Bruker AFM was adopted in this experiment. For the intelligent mode, surface 
bubbles destruction and slip are smaller than the tap mode, in the needle scanning process. 

The sample vessels with the substrates were cleaned by 15% sodium pyruvate solution and then 
were put into the ultrasonic cleaning machine for 30 min cleaning. Finally, the surface of the substrate 
was washed 2~3 times with ultrapure water again and was dried by nitrogen gas. Next, 99.9% ethanol 
was injected in the Au and Pb sample vessels respectively, until each substrate was just submerged. 
Subsequently, ultrapure water was poured into both of the sample vessels respectively, at the same time 
the half of the alcohol-water mixture in the sample vessel was sucked out by a syringe pump quickly. 
At the moment, micro/nano-bubbles would generate on the surface of the substrate, because the 
saturated vapor pressure of ethanol is greater than pure water at the same temperature and pressure 
conditions. When alcohol was replaced by pure water, dissolved air was coagulated on the substrate 
surface to form micro/nanobubbles further (Azevedo et al., 2016). Certainly, when environment 
pressure reduces, the saturated vapor pressure of the same liquid would decrease and then generate 
micro/nano-bubbles yet at the same temperature. Micro/nano-bubbles formed by the alcohol and 
water displacement on substrates surface were scanned through the intelligent model of Bruker AFM 
in  5 µm × 5 µm range. 

2.3. Hydrodynamic cavitation tests 

Negative pressure also produces in the back zone of the impeller rotor and the venturi tube nozzle in 
flotation devices (Xu et al., 1996; Filippov et al., 2000). Compared to the impeller rotor, there is a higher 
flow speed in the venturi nozzle. The process of jet cavitation at the venturi tube nozzle was investigated 
by using a high-speed dynamic camera at 1500 fps. In the experiment, the inlet valve of the venturi tube 
was closed. When flow volumes of the peristaltic pump were 300 dm3/h, 400 dm3/h, 500 dm3/h, and 
600 dm3/h separately and nozzle diameter was 2 mm, the velocities of jet flow were 26.52 m/sec, 35.36 
m/sec, 44.20 m/sec, and 53.04 m/sec separately at the nozzle. The cavitation phenomenon could be 
observed at different flow velocities. 

2.4. Tests of cavitation effect on BSD 

To study the cavitation effect on BSD, the bubbles attached to the Pb and Au substrates were measured 
by a Carl Zeiss polarizing microscope. At first, the venturi tube bubble generator and the bubbles 
sample vessel with different substrates were cleaned 30 min by an ultrasonic cleaning machine and then 
were flushed with ultrapure water 2~3 times again. Air volumes were adjusted by the inlet valve and 
the bubbles sample vessel was put in the 3 dm3water cell. When the flow velocities in the nozzle of the 
bubble generator at 26.52 m/sec and 35.36 m/sec severally, 10 min later, the bubbles sample vessel filled 
with water was taken out from the cell using a tweezers cautiously. Then, the substrate’s surface 
attached with a lot of bubbles in the sample vessel was observed by a microscope (×10 oil lens and ×10 
lens) with ProgRes C5 image capture and processing system. A series of bubble images were imported 
into the Image-Pro Plus 7.0c software. BSD data of different hydrophobic substrates surface could be 
got using the method of gray shadow. 

3. Results and discussion 

3.1. Supersaturated cavitation effect 

Fig. 3 presents the measurement result of micro/nano-bubbles precipitated on the Pb substrate by AFM. 
Fig. 3(a) shows the solid surface morphology of the Pb substrate before alcohol-water displacement. The 
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scanning range was 5 µm × 5 µm, and the surface undulation height was 6.1 nm (measurement accuracy 
was 1 nm). The Pb substrate surface is flat and regular from the result. Besides, Fig. 3(b) shows the Pb 
substrate surface after alcohol-water displacement. As well, the scanning range was 5 µm × 5 µm, and 
the surface undulation height was 6.3 nm. However, a mass of nano-bubbles, a diameter of about 100 
nm and a height of about 20 nm on the Pb substrate can be distinguished clearly. Since there were not 
any contaminations in the experimental process, the supersaturated cavitation effect generated the 
nano-bubbles. 

 
Fig. 3. AFM results of (a) solid configuration and (b) micro/nano-bubbles precipitated on Pb substrates 

Fig. 4 presents the measurement result of micro/nano-bubbles precipitated on the Au substrate by 
AFM. Figure 4(a) shows a solid surface configuration of the Au substrate before alcohol-water 
displacement. The scanning range was 5 µm × 5 µm. Au substrate inclining height was 43 nm, and the 
surface undulation height was 4 nm (measurement accuracy was 1 nm). Figure 4(b) shows the Au 
substrate surface after the alcohol-water displacement. As well, the scanning range was 5 µm × 5 µm, 
and the surface undulation height was 3 nm. Plenty of bright spots distributed on the Au substrate 
surface can be distinguished clearly. The big bright spot diameter was about 300 nm, and the height 
was about 40nm. Similarly, the bright spots were identified as micro/nano-bubbles after contrasting 
and analyzing the Au substrates in different conditions.  

As seen in Figs. 3 and 4, there are more micro/nano-bubbles on the Au substrate surface compare 
with Pb substrate surface, because the hydrophobicity of Au is greater than Pb. The micro/nano-
bubbles attached to the mineral surface can provide a significant enhancement in the collision and 
adhesion process of air bubbles and mineral particles (Schubert, 2005; Ahmed, 2010). It is known that 
micro/nano-bubbles attach to particle surface more stable than conventional bubbles (Fan et al., 2010b; 
Fan et al., 2010c; Ushikubo et al., 2010; Hang and Massoud, 2014.). In such a case, micro/nano-bubbles 
increase fine mineral hydrophobicity. The experimental results showed that supersaturated cavitation 
can generate nano-bubble cluster on a solid surface, and then promote bubble mineralization in 
flotation. 

3.2. Hydrodynamic cavitation effect 

As all known, flow velocity plays a key role in hydrodynamic cavitation. Under the same temperature 
and  pressure  condition,  when  one  kind  of  liquid with high saturated vapor pressure is displaced by 

(a)

(b)
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Fig. 4. AFM results of (a) solid configuration and (b) micro/nano-bubbles precipitated on Au substrates 

another low saturated vapor pressure liquid, the supersaturation cavitation generates micro/nano-
bubbles on the hydrophobic solid surface. Similarly, for the same kind of liquid at the same temperature, 
the environment pressure drops can also cause supersaturated cavitation, and then produce 
micro/nano-bubbles. 

Fig. 5 shows hydrodynamic cavitation results at different flow velocity of gradual change in the 
nozzle of the venturi tube. When the water flow passes through the nozzle, flow rate and pressure 
gradually reduce with the pipe diameter increasing. Both of the pressure increases and fluid shear cause 
an obvious cavitation cloud near the nozzle (Dong and Su, 2006). When the flow velocity increases from 
26.52 m/sec to 53.04 m/sec, the cavitation cloud intensity strengthens gradually. The viscous force and 
the drag force leading to flow velocity decrease, which caused by shearing action between the fluid 
micelle. Therefore, the cavities belong to vortex cavitation, and the low-pressure area in the vortex 
center can generate cavitation nuclei. 

 

Fig. 5. Results for hydrodynamic cavitation at different flow velocity of gradual change in the nozzle of the 
venturi tube (a) 26.53 m/sec (b) 35.36 m/sec (c) 44.20 m/sec (d) 53.04 m/sec 

Fig. 6 shows hydrodynamic cavitation results at different flow velocity of gradual change near the 
nozzle of the venturi tube. With flow velocity decreasing suddenly, the cavitation cloud appears more 
obvious. When the flow velocity increases from 26.52 m/sec to 53.04 m/sec, the cavitation cloud 
intensity strengthens suddenly. Compare with the gradual change of flow velocity, the cavitation cloud 
intensity and scope at sudden change conditions are greater, due to greater pressure drop and fluid 
shear stress. As previously mentioned, this hydrodynamic cavitation can produce a large number of 

(a)

(b)

(a) (b) (c) (d)
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micro/nano-bubbles, these contribute to the flotation of fine-grained minerals (Bhondayi and Moys, 
2014). In that case, stronger hydrodynamic cavitation will have a greater impact on flotation bubbles. 
 

 
Fig. 6. Cavitation results at different flow velocity of leap change near the nozzle of the venturi tube (a) 26.53 

m/sec (b) 35.36 m/sec (c) 44.20 m/sec (d) 53.04 m/sec 

3.3. Cavitation effect on BSD 

As previously described, hydrodynamic cavitation can affect bubble size in flotation, however flow 
velocity plays a key role in hydrodynamic cavitation. The BSD under the cavitation effect at 26.52 m/sec 
and 35.36 m/sec flow velocity was given in Figs. 7 and 8, respectively. The venturi tube bubble generator 
was used to generate bubbles with sudden change flow velocity. The BSD determined from the 
measurement was performed with Au and Pb substrates. For each experiment condition, 50 photos 
collected from the different zone of each substrate identified by gray differences were statistically 
analyzed, respectively. Both for Pb and Au, the biggest bubble diameter Dmax is 600 µm, however, the 
Dmin is 10 µm. On the Au substrate surface, the bubbles were more than the Pb substrate at different 
nozzle flow velocity. Compare with 26.52 m/sec flow velocity, the bubble quantities with 35.36 m/sec 
were greater. From the results of BSD, the biggest proportion of bubbles was distributed at 10~50 µm 
range. 

 

Fig. 7. BSD on (a) Au and (b) Pb surface at 26.52 m/sec flow velocity  

 
Fig. 8. BSD on Au and Pb surface at 35.36 m/sec flow velocity 
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As seen in Figs. 7 and 8, the plentiful of -50 µm tiny bubbles attach on the Au surface, and the greater 
flow velocity is, the more bubbles attached on the substrate surface. It illustrates that the cavitation effect 
plays a significant influence on the bubble's size. As all know, enormous energy generated by 
hydrodynamic cavitation bubbles collapse could etch the structure of equipment in flotation. However, 
on Au and Pb surface, when flow velocity increase from 26.52 m/sec to 35.36 m/sec, bubble size 
decrease gradually, but the bubble number increase. It might be related to the collapse of energy 
generated by the hydrodynamic cavitation impact on the air bubble surface. The enormous collapse 
energy of cavitation can laminate the air bubble and split it into tiny bubbles. As previously mentioned, 
the pressure drop which leads to nano-bubble production is accompanied by the hydrodynamic 
cavitation generation. In flotation, the cavitation effect on BSD appears in two aspects. The first is the 
nano-bubble production by pressure drop and the second is the tiny bubble generation by cavitation 
bubbles collapsing on air bubbles. Therefore, the hydrodynamic cavitation effect can prompt tiny 
bubbles and gas nuclei the formation which is conducive to fine mineral particle recovery in flotation. 

4. Conclusions 

In this study, micro/nano-bubble generated by the cavitation effect as a promoting factor for flotation 
was investigated by the AFM. Hydrodynamic cavitation tests were performed with a venturi bubble 
generator. Additionally, the BSD under the hydrodynamic cavitation effect was also studied at different 
water flow speed conditions. Dozens of nanometers height bubbles attached to the hydrophobic 
substrates were detected. The following results were obtained from this study: 

Air is always surplus in the flotation process due to aeration. On the one hand, a lot of micro/nano-
bubbles attach to the hydrophobic particles generated by supersaturated cavitation, on the other hand, 
plenty of tiny bubbles are formed by hydrodynamic cavitation. A part of micro/nano-bubbles and tiny 
bubbles could dissolve in water in the high-pressure zone, but dissolved air could coagulate to gas 
micronucleus in the low-pressure zone yet. 

The results of supersaturated cavitation and surface nano-bubbles tests indicate that a few hundred 
nanometers width and 10-40 nm height bubbles formed on the different hydrophobicity surface. 
Besides, the more hydrophobicity of the surface is, the more micro/nano-bubbles generate and attach 
on the surface.  

The hydrodynamic cavitation cloud was detected obviously near the venturi tube nozzle at the 
different flow velocity conditions. Flow velocity and pressure drop determine the hydrodynamic 
cavitation intensity and tiny bubbles quantity. 

It can be concluded from this study that the hydrodynamic cavitation effect promotes the tiny bubble 
proportion in bubble size distribution. Tiny bubbles are conducive to fine and slow-floating mineral 
particle flotation. 
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